Performance Analysis of Neural Networks Training using Real Coded Genetic Algorithm

نویسندگان

  • Partha Pratim Sarangi
  • Banshidhar Majhi
  • Madhumita Panda
  • Chien-Yu Huang
  • Long-Hui Chen
  • Yueh-Li Chen
  • Fengming M. Chang
چکیده

Multilayer perceptrons (MLPs) are widely used for pattern classification and regression problems. Backpropagation (BP) algorithm is known technique in the training of multilayer perceptrons. However for its optimum training convergence, the learning and momentum parameters need to be tuned on trial and error method. Further, sometimes the backpropagation algorithm fails to achieve global convergence. To alleviate these problems we suggest a genetic algorithm based training for MLP network. Both binary coded and real coded genetic algorithm are used and a comparative training performance analysis has been studied. It is observed from simulation results that both the schemes outperform backpropagation algorithm and achieve global convergence. Further the real coded GA based training shows a faster convergence than binary coded GA based training. For simulation datasets are taken from UCI based machine learning repository. Hence real-coded genetic algorithm finds an alternative for back propagation based training algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of groundwater level using a hybrid genetic algorithm-neural network

In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...

متن کامل

Estimation of groundwater level using a hybrid genetic algorithm-neural network

In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...

متن کامل

Neural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features

This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...

متن کامل

Comparative Analysis of Neural Network Training Methods in Real-time Radiotherapy

Background: The motions of body and tumor in some regions such as chest during radiotherapy treatments are one of the major concerns protecting normal tissues against high doses. By using real-time radiotherapy technique, it is possible to increase the accuracy of delivered dose to the tumor region by means of tracing markers on the body of patients.Objective: This study evaluates the accuracy ...

متن کامل

Modeling of measurement error in refractive index determination of fuel cell using neural network and genetic algorithm

Abstract: In this paper, a method for determination of refractive index in membrane of fuel cell on basis of three-longitudinal-mode laser heterodyne interferometer is presented. The optical path difference between the target and reference paths is fixed and phase shift is then calculated in terms of refractive index shift. The measurement accuracy of this system is limited by nonlinearity erro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012